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SUMMARY

Eguations were derived for the prediction of velocity distribu-
tions for fully developed adiabatic turbulent flow in smooth tubes;
both the incompressible- and compressible-flow cases were treated.
The analysis produced a single equation that represents flow in both
the conventional buffer layer and the laminar layer., By graphical
integration of the velocity-distribution equations developed, a
dimensionless flow-rate parameter was obtained and plotted. Use
. of the flow-rate parameter permits the prediction of pressure
gradients along a tube for various flow rates.

In order to check the analysis and to determine values for
the constants appearing in the equations, tests were conducted to
determine velocity distributions in alr flowing without heat.transfer
in a smooth tube having an inside dlameter of 0.87 inch and a length
of 87 inches. Data were obtalned for fully developed veloclity dis-
tributions and for developing velocity distributions at various
distances from the entrance of the tube.

The results.for fully developed flow were correlated by using
conventional dimensionless velocity and distance pareameters, and
agreed closely with those of Nikuradse and other investigators.
The plots of the equations and of the flow-rate parameter agreed
well with the data when appropriate values of the two experimental
constants-appearing In the equations were used.

INTRODUCTION

Much empirical work has been done on the flow of fluids in
tubes, and it has long been possible to predict fluild-flow pressure
drops with a fair degree of accuracy by using experimentally deter-
mined friction factors (reference 1, pp. 232-272)., Somewhat less
work hag been dons in an effort to understand the mschanism of
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turbulent flow in tubes and to develop & tl}eory that i1s In complete
agreemsnt with the measurements, The Karmén similarity theory, which
is perhaps the best-known contribution, satisfactorily predicts

the velocity distributions for fully developed inocompressible flow
except in the vicinity of the wall (reference 2).

In an investigation made at the NACA Lewis laboratory, & new
equation was developed that gives the relation between velocity and
distance from the wall for both the laminar and the so-called buffer
regions. For completeness, the KArmin-Prandtl development for the
velocity distribution at a distance from a wall (turbulent region)
is also included. In the present analysis, this development is ex-
tended to compressible flow, that is, to the case 1n which variation

“of temperature across the tube due to high velocities is appreciable.

Because of the scarcity of veloclity-distribution data,
espocially for conditions under which compressibility might be
appreclable, investigations were made to determins velocity dis-
tributions in a tube at wvarious distances from the entrance and
for fully developed flow. The results of these investigations,
reported herein, are used to check the analysis.

ATATYSIS
General Turbulence Theory

During turbulent flow through a tube, portions of the fluid
move about in random fashion, Inasmuch as & transverse-velocity
gradient exists, some portions emter regions of various mean .axial
velocities., Momentum 1s then transferred from one portion to
another and a shear stress, in addition to the viscous shear stress,

is produced. .

By analogy with the law for viscous shear stress T, =pn du,/dy,
the equation for the shear stress produced by turbulence is often
given in the following form:

T, = pe 4u 7 (1)

where p€ 1s comparable to the viscosity for viscous shear u,
and € 1s the coefflclent of eddy diffusivity, the value for which
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1s determined by the amount and the kind of turbulent mixing at a
point. (The symbols used in this report are defined in the appendix.)

The analogy between shear stresses produced by viscosity and
those produced by turbulence is not quite exact because the mechaniem
for momentum transfer 1s scmewhat different for the two conditions.
The chief difference probably 1s that in the case of viscous shear
momentum transfer takes place suddenly at the Instant the molecules
collide; whereas in the case of turbulemce, portions of the fluid
can continuously transfer their momentum as they travel transversely
inagmch as they continuously act on one another. This difference
can, however, be absorbed in the value of €, which 1s descriptive
of the turbulence mechanism, so that equa.tion (1) should still be
valid.

The total shear stress T may be obtalned by adding the vis-
cous shear stress to the turbulent shear stress as follows:

o 38y e Qu (2)
ay ay

In order to make practical use of equation (2), € must be
evaluated for each portion of the flow. Because the actual mech-
anlsm of turbulent exchange of momentum is very complicated, the
msthod of dimensional analysis is used and the constants obtained
in the analysis are evaluated by experiment. From consideration
of the various factors on which € might depend, the following
funetional relation 1s assumed:

e:f(u,y,g g; dzg’d33:'°>
P ay* dy

Although the turbulence mechanism might conceivably depend on p/p,
the influence of thls factor is assumed negligible and the valldity
of this assumption is experimentally checked.

Flow at a distance from wall. - It is shown by von Karman
(reference 2) that for flow at a distance y from a wall the
shear stress is given by
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4
' du

'r=pnz< ) (3)

where K2 1is a constant of proportionality experimenbally deter-
mined, Viscous shear stress 1s neglected in the derivation of this
equation, Combination of this equation and equation (2), with the
viscous shear stress neglected because 1t is small except in the
region close to the wall, gives tho following expression for local
eddy diffusivity for flow at a distance from the wall:

an)®
ex:h',z@_ (4)
2
a%u |
ay?

Equation (4) could also have been obtained from the gensral func-
tional relation for € by assuming that only the first and second
derivatives of the velocity with respect to distance are Iimportant
in determining the value of €, and by applying dimenslional anal-
yeis. This fact indicates that the eddy diffusivity, or turbulent
transfer of momentum, at a point away from the wall is chiefly
dependent on the velocities in the vicinity of the point relative

to the velocity at the point and is indeperndent of the magnitudes

of u and y. The fact that € at a point away from the wall is
dependent more on the velocity distribution than on the magnitude of
the velocity wu at the point may be illustrated by noting that at the
smooth entrance to a tube, where the velocity profile is uniform over
most of the cross sectlion, turbulence at & point away from the wall
1s negligible compared with that farther down the tube at a point at
which the mean axial velocity is equal to that at the entrance , but
at which the flow profile is fully developed. This change from zero
eddy diffusivity at the entrance to an appreciable degree of turbu-
lence farther down the tube has been clearly shown by experiments
with dye in a stream (reference 1, (Frontispiece.)). In the remainder -
of the analysis, equation (3) is used in calculating flow at points
distant from the wall,

1323
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Flow in vicinity of wall, - Although the effects of the magni-
tudes of u and y on € can be neglected in considering flow at

‘points distant from the wall, it appears that they must be accounted

for in considering flow close to the wall. The experimsntal data
available indicate that the turbulent transfer of momentum and thus
the turbulent shear stress becoms very small in the reglon close to
the wall, so that near the wall practically all shear stress is
produced by viscous action and the velocity u 1s very nearly a
linear function of" y (reference 3). The second and possibly
higher veloclty derivatives therefore approach the constant value
zero in the vicinity of the wall and the first derivative approaches
a constant, which is defined when u and y are given. As pre-
viously stated, the effect of u/p "on € 1s assumed negligible.
As a first approximation, 'the functional relation for € is there-
fore written as

€ =f (u,y)

The range of values of y for which this approximation is suffi-
clent will be experimentally determined., From dimensional analysis,

€ = nluy (5)

where n2 is a constant of proportionality to be determined
experimentally. Substitution of equation (5) into equation (2)
glves

a': - T=K 22‘ + nzpuy 4du : (5)
dy ay

In the remainder of the analysis, eguation (6) 1s used in calculating
velocity distributions close to the wall,

e v —— . e e e G L i e emme— vy dcaegn e em e - e e e e L
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Equations Por Incompressible Flow

Flow in vicinity of wall. - In order to obtaln egquations that
are in dimensionless form, the following commonly used dimensionless
quantities are employed:

= 2% (7)

NTo/pg

Ho/P

y+E d O/DO y (8)
0

Then
T g F
% =9 2}1_+. ) (9)
I Mg ay
and
d.zu = TO VT pO d.2u+ (10)

2 2 2
" my /ey gyt

On substitution of equations (7) to (9), equation (6) beccmes

T + + T +
To = Mo 2L 4 n2.0 AT Jo  wt B0 ¥ 04w

0 0 VT/00 Yo ayt

where p and p have been replaced by o and Ho» respectively,
because the density and the viscosity are the same at all points for
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incompressible flow. The shear stress T has been approximated by
To because only the region close to the wall 1s being considered

and the variation in T for this region is slight,

By rearrangement and cancellation of like terms, the preceding
equation simplifies to

n?ufy*

R

- (11)
du

=1

This equatién 18 a first-order linear differentlial equation having

the solution
ot
(puf)z -gnn+)2
+e 2 o 2 dut
0

When yt =0, then ut =0 and

ot
-gnuflz
e 2 aut
0

(ut)?
+

y = Ce 2

=0
Therefore C = 0 and
ot
(nu*)z -(nn*)z
y+ =e 2 e 2 dut
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This equation can be rewritten as

2 d(nut)
(12)
_ 2
1 e 2
Al2n
+.2
={(nu .
1 2 is the normal error function of mu'. (See

where e
/VZ:t
reference 4,) The relation between ut anmil y* for incompressible

flow near the wall is given in equation (12).

Flow at a distance from wall with shear stress uniform across
the tube, - For flow at a distance from the wall, the analysis that
was developed by von Kérmén for the region near a. wall (effect of
viscosity neglected) and applied by Prandtl to the reglon at a dis-
tance from a wall is presented here. This application involves the
assumption that the shear stress is constant across 'the. tube, an
assumption that will later be shown to be sufficlently accurate for
this application, If this assumption is made and expressions (9)
and (10) are substituted into equation (3),

- (i )

This equation can he Integrated to give

+
1y _stac

1
K oaut
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At the wall, the veloclty gradlent is very large compared with that
at a distance from the wall so that dyt/dut can be considered
equal to zero when y =0, giving C; =0 amnd

e«

0
)=

A

(14)

After the variables are separated, thls equation can be integrated
again to give

+_1 +
ut = logy ¥ +C (15)

where C 1s a constant of integration, the value of which may be
found when the ranges of applicability of the equations for flow
close to a wall and at a distance from & wall are known., The ranges
of applicability for the equations are to be experimentally deter-
mined. The relation between ut anmd y for incompressible flow
at a distance from the wall when constant shear stress across the
tube 1s assumed is given in equation (15).

Flow at dlstance from wall with variable shear stress across
the tube. - A result that avoids the assumption of uniformity of
shear streas across the tube was derlved by von Karmin substantially
ag follows: The relation for the variatlon of shear stress with
radius for fully developed flow 1s obtained by equating the shear
forces to the pressure forces acting on a c¢ylinder of fluid of
arbitrary radius and differential length (reference 5)., This rela-
tion 1s

7= (1 - 5'_+;) TO' ' (16)
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where
. /VT
r+ NTo/eg (17)
0 " w /o, O
0

On substitution of equations (7) to (10) ard (16), equation (3)
becomes, in dimensionless form,

(du? _
A/-r+=-nd2+ / ' (18)

ag*

where the negatlve sign was selected on taking the square root in
order to make K positive,

The first integration gives - o

+
a - - 2nf\fro"' N A
dut

As previously stated, the veloclty gradient at the wall is very
large compared with that at a distance from the wall a.nd. ayt/aut
can be considered to be zero at the wall (that is, at yt = 0).
Hence

\

+

+
& _ -2k '\Ir Azt - g+ + 2xegt | (19)
d.u+

aror
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By substitution of X2 = ro+ - y+, equation (19) can be integrated

to give

+ . + ‘
u"’:%. 1-L_ +10g, (1-41-L)|+cC (20)
I_0+ . r0+

Equation (20), which is substantially the equation obtained by
von.Karman relates ut to y* for various values of r0+. Taking

the variation of shear stress into account introduces the additional
dimensionless parameter r0+, which will be called the tube-radius

parameter., The equations developed by wvon Karman for the flow
distant from the wall will be extended for compressible flow by a
method subsequently developed herein,

Equations for Compressible Flow

In the derivation of the compressible-flow equations, uniformity
of shear stress across the tube.ls assumed and the error introduced
is discussed in the sectlion "Effect of Variasble Shear Stress,"

Flow in vicinity of wall. - For compressible flow in a tube,
the static temperature and thus the density and the viscosity vary
across the tube., For flow without external heat tranmsfer, the total
temperature at any point ecross the tube 1s practically the same as
the wall temperature, so that the static temperature is given by

t =T, - u?

21
0  2gdc (21)

D

This relation is exact for é Prandtl number of 1,

By use of the perfect gas law, the density p may be expressed

- D ) P
gRt o2 =z
er <%0 - 2gdc, eRTy |1 - 2gde,T,

as
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or

o}
p =9 (22)

1 - ————
2gd cp'.['o

where the statlc pressure p has been assumed uniform across the
tube,

Viscosity is a function of temperature and can be represented
by an equation of the form

H = th . (23)

where K 1is some constant, Then

< 2 d a 2. a
2chp 0 ZchPTO

d
B =Hp G- m) ‘ (24)

Substituting these valuss for the density and the viscosity into
equation (6) and letting T = Ty Tesult in

da
2 p
Toopa (1 -2 Jau, Po  ,2.du 25
0 ”0< ZchpT0> dy+ ue o dy (25)

1323
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Substituting values from equations (7) to (9) into eguation (25), in
order to convert 1t to a dimensionless form, gives

d
Pty aut , (1 ond)” @ty

~ (26)
1-qut ¥

where

T,

0
[o A — S 27
ZchpTopo (27)

The dimensionless parameter a will be called the compressibility
parameter. After rearrangement, equation (26) becomss

. a
ayt _ _nlat yt = (1 - au+z>

+ 2 (28)
du - aut

which is a first-order linear dlfferentlal equation with variable
coefficients. Solving equation (28) and setting the constant of

integration equal to zero, as was done 1n the solution of equa-
tion (11), gives

-— + da
y+ é_ - a'u+ j < - -l-2 (-29)

For compressible flow in the vicinity of the wall, equation (29)

gives the reletion between ut ami 3t

for various values of a,

Flow at a distance from wall. - With fhe assumption of uniform
shear stress, equation (3) can be written for compressible flow as

e s i
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)
0 Kz
© nl d2u\2

- 2gJe T, ay2

TO =
When written in dimensionless form, this equation becomes

d.zu"'

——— T2 -

+2
—_—r /4w
2 «’
d-y+ l-a,u+2 d‘y-')

One integfation of equation (30) can be made by substituting
v = dut/dy* and dy* = dut/v and then separating the variables.
After one integration, equation (30) becomes

(30)

dut -
log, Gl ;;1; = -'\7% sin~l (Aau*)
orY
K
+ - 7=sin"1 (Aau™)
Cl d.u+ =6 'VE.- (31)
dy
or
S | +
sin™t (Afau™)
ayt = cle'ﬁ dut (32)

I £ ginl (Waut) 1s set equal to 2, equation (32) can be
< A
integrated to yield

1323
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LIPS | +
v+ =ﬁ—EN€ st (e )] (K‘dl - at? +uu"') +C

sin"l (Aou™)
By substituting dy'/du’ from equation (31) for Cq e

in the immediately preceding equation and letting dy"'/du equal
gero when yt amd ut equal zero, C equals gzero and thus

+ Cc
.v=21
Kl+a

X sinl (Waut
[:e’\ﬁi sin™" (Vo )] (K‘Vl - au"'z + a;ua (33)

For compressible flow at a distance from the wall, equation (33)
shows the relation between u* amd y* for various values of a.

Sunimary of Veloclty-Distribution Equations

The important equations that have been derived are assembled
here for convenience:

For incompressible flow close to the wall,

2 d.(rm"‘)
.. m“l’ 2

l
= (12)
1 2
—_—
A2x
~(mh)?
where L e 2, ig the normal error function of mu*.

Nex
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For incompressible flow at a distance from the wall, with shear
stress uniform across the tube,

ut =2 J.Ose yt+C (15)

For incompressible flow at a distance from the wall with shear
stress varlable across the tube,

"’=%ﬂ’ +loge< A,l L (20)

For compressible flow close to the wall,

-no no
n L ,a .
2 2q
vt = ( (1 - aut ) aut (29)

For compressible flow at a distance from the wall with shear stress
uniform across the tube, ’

B _,-1 +
y"‘=._ci. [eﬁsin (/\lc_mﬂ <K‘V1-au+2+w'> (33)

K2+a

APPARATUS

A schematic diagram of the experimental apparatus used 1s showr
in figure 1. Air at a pressure of about 40 pounds per square inch
gage and at approximately room temperature flowed through two con-
trol valves in parallel, then through a filter, an orifice, a calming
tank, a test section, and into the atmosphere.
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Test gectlon, - The test sectlon consisted of a smooth Inconel
tube having an inside diameter of 0.87 inch, an outside diameter of
1.0 inch, and a length of 87 inches. The calming tank was so con-
structed that either a rounded or a right-angle-edge entrance to the
tube could be used; the rounded entrance consisted of a standard
A8 M.E, long-radius nozzle, 'Statlic pressures were measured through
0.03-1nch holes drilled in the tube at the positions shown In
figure 1. Alr total temperatures were msasured by thermocouples
located at the 1nlet and outlet of the tube; these measurements
provided a check on whether heat transfer took place through the
tube wall,

, )
Total-pressure meesurementg. - Openings for taking total-

pressure measurements across the tube were located as shown in

figure 1, Holes having 0.15-inch diameters through which a total-

pressure probe entered the tube were drilled In the tube wall.

These holes were located at right angles to the static-pressure .

taps. A probe actuator to move the probe across the tube and to

meesure 1ts distance into the tube was fitted Into a short length

of tubing at each opening. The location of the total-pressure

probe with respect to the opening in the tube is shown in the insert

in figure 1. The total-pressure probe used for the measuremsnts had

a 0.016-inch-diameter opening and a 0.002-inch wall at the tip. The

probe was flattened out for soms of the runs so that the width of

the opening was 0,005 inch., The probe was made so that the tip

Just cleared the edge of the 0.15-1nch hole In the test section.

The total proJected area of the probe in the direction of flow

with the tip at the center of the tube was about 15 percent of -

the area of the tube, but the effective blocking area at the tip

was considerably less because the mein portion of the probe was

downstream of the tip.

METHODS

Procedure

In order to establish the applicability of the equations derived
for fully developed flow, velocity distributions at various dis-
tances from the tube entrance were first determined, Mseasurements
were made at Reynolds numbers of approximately 40,000, 160,000, and
580,000 with both rounded and right-angle-edge entrances and with
corresponiing tube-exit Mach numbers up to 1. The flow rate in
each case was obtalned by adjusting the Inlet pressurs.
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A more extensive series of Investigations was then conducted to
determine velocity distributions for fully developed flow Including
distributions for the region close to the wall. Runs were made at
about 20 different Reynolds mumbers between 10,000 and 200,000 and
with Mach numbers up to 0.5 with the total-pressure probe near the
oxlt of the tube where the flow was practically fully developed.
Runs were made with both the rounded and the right-angle-edge
entrances, Total-pressure readings were taken at points between
the wall in which the probe opening was located and the center of
the tube. Readings near the opposite wall were Inaccurate because
of disturbance due to the probe.

Measurements were made with both the round and the flattened
probe tips in order to determine whether presence of the probe had
eny effect on the measured velocity distributions in the vicinity
- of the wall, Because no apprecidble difference could be noticed
between the measurements made with the two types of tip, it was
concluded that the presence of the probe did not affect the meas-
urements and that the aerodypmamic and geometric centers of the hole
coincide. '

Proliminary rung at high and at low flow rates showed that the
total temperature of the air was uniform along the length of the
tube, indicating that no heat transfer occurred. The air total
temperature was therefore measured only at the outlet.

The following quantities were measured for each run: air flow,
static pressures at the wall, air total temperature, total pressure
at varlous positions across the tube, and distance of the probe tip
from the wall,

Reduction of Experimental Data

Velocities. - For low air-flow rates, incompressible-flow
theory was used; the velocities were calculated from the equation

P-p= % pu2

where p was found from the equation of state for perfect gases

p:pgRt
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and t was taken equal to the total temperature., In this and in all
succeeding calculations, the static pressure was assumed to be uni-
form across the tube,

For Mach numbers greater than 0.2, velocities were calculated
from the relation

Z_

y-1
2: l+kl_q2_
P 7 2gRt

21
=T(2)7
where t =T (P)
Shear stress, - The shear gtress at the wall for fully dev-

eloped flow is related to the friction-pressure gradient by the
equation

The friction-pressure gradients were obtained by subtracting
calculated momentum-pressure gradients from the msasured static-
pressure gradients along the tube; the momentum-pressure gradients
were calculated from '

(22) w2 9
T%/nom  ppZAZgE A%

where p, was found from the equation of state

D = oty

[ — -t e e e e e e e e o e e e L i e e e e e e v — — e
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[\
2n2 o
-1‘WJJ.+ Z-JLEL%—§ 3
b = gJcpAp
szz
gdc A%p?

The last equation was obtained from the equations of energy, con-
tinuity, and state. The pressure and denslty gradients were
graphically determined by plotting pressure and density against
distance along the tube and drawing a tangent to the curve at the
point 1n question,

Distance from wall, - The zero reading of the probe actuvator
was found by plotting velocity against distance reading on the
probe actuator for a number of runs and extrapolating the curves
to zero velocity where all the curves intersected. Thils extrapola-
tion gave the probe-actuator reading with the probe tip at the wall.
The distance of the tip from the wall for each reading could then
be easlily calculated. :

Bulk velocity. - In order to obtain ratios of local to bulk
velocity u/w, at various positions across the tube, the bulk

velocity w, was obtained by plotting u against cross-sectional

areea nrz, measuring the area under the curve,_and dividing by
the total cross-sectional area of the tube nroz. This procedure

is equivalent to solving the equation

2

™0
f u d(xr?)
0

2
Ty

and gave more accurate values of ufw, than would have been

obtained by use of orifice measurements of welght flow for the
determination of w,, inasmuch as errors in u due to errors

in static-pressure measurements were also contained in w, and
any systematic errors tended to cancel. .
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RESULTS AND DISCUSSION
Variation of Velocity Distribution along Tube

The results of the tests in which variation of the velocity
distribution along the tube was determined are summarized in
figures 2 and 3. Typical radial velocity distributions at various
tube dlameters from the rounded entrance of the tube are shown in
dimensionless form in figure 2.

In figure 3, which is somewhat more descriptive than figure 2,
the varlation of velocity along the tube at the center and at
r/rO = 0.9 18 shown for both a rounded and a right-angle-edge
entrance. The curves show that the development of the velocity
distribution was more rapid for the right-angle-edge entrance than
for the rounded entrance; with the right-angle-edge entrance fully
developed flow was obtained after about 45 tube dlameters from the
entrance, but with the rounded entrance the distribution was still
developing slightly at 100 tube diameters from the entrance. This
difference in rate of development was apparently caused by the vena
contracta formed at the entrance of the tube with the right-angle-
edge entrance, and indicated on figure 3(b) by the points close to
the entrance., The presence of the vena contracta accelerated the
flow at the center of the tube and thus hastened the development of
the disgtribution, ’

The curves also show that Reynolds number affected the dis-
tribution near the center of the tube because u/ub decreases as
Reynolds number increases, This variation is In agreemsnt.with
previous findings (reference 6)., Difference in Reynolds number
has, however, little or no effect on the distribution close to
the wall.

A significant observation can be made from flgure 3 concern-
ing the difference between the rates of development of velocity
distribution at the center of the tube and near the wall, Figure 3
Indicates that with both entrances the final distribution is
attained much soonser In the vicinity of the wall than at the
center of the tube. This fact might explain why, in the present
invesgtigation, the static-pressure gradients along the tube caused
by friction were only slightly affected by entrance effects., The
statlic-pressure gradient is determined by the velocity gradient
at the wall and 1s unaffected by the distribution in the remainder
of the tube.

et o m e mmma A e e+ ¢ —— <w— a A= e ——— - o e
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As will be shown in the discussion of fully developed flow in
the section "Effect of Variable Shear Stress,"” the effect of com-
pressibility on velocity distribution is slight' although scme of
the determinations were made at high subsonic Mach numbers, it is
therefore believed that the results are also applicable to incom-
pressible flow. . .

Velocity Distributions for Fully Developed Flow

Correlation of experimental data. - The variation of u’ with
y* for data obtained near the exit of the test section (that is,
for x/D = 100) where the flow is fully developed is shown on
rectangular coordinates in figure 4(a)., The data obtained near
the wall are plotted to two y+ scales. The data are plotted
semilogarithmically in figure 4(b). Data for flow close to the
wall are shown for only the low flow rates because at high flow
rates the severe velocity gradients and the presence of the hole
in the tube wall make the accuracy of the msasuremsnts doubtful.
The date shown were taken with both rounded and right-angle-edge
entrances, but the velocity distributions with the two types of
entrance were the same within the error of the measurements,

Comparison of the data in figure 4(d) with those of Nikuradse
and of Reichardt (reference 3) shows close agreemsnt for all values
of y up to about 600. For higher values of y* , the corres-
ponding values of u't are slightly higher than those obtained
by Nikuradse (reference 1, p. 242); the maximm deviation, however,
is only about S percent.

]
A method of using flgurse 4 to obtain the velocity distribution
for a particular tube when the flow rate 1s given 1s indicated 1n
the discussion of figure 8.

Incompressible-flow equations., - The curve corresponding to
equation (12) for incompressible flow near the tube wall is in-
cluded In figure 4 and 1s in good agreement with the experimental
results for values of y from 0 to 26. The value of the con-
gstant n In the equation 1s 0 109, as determined from the
experlimental data.

An important property of equation (12) is that for small
values of y', u' amd y* are approximately equal, that is,
the flow predicted by the equation is nearly laminar. This approach
to equality of u' aomd y* 1s due to the fact that as the wall
is approached the eddy diffusivity € becomes very small and 1s
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zero at the wall (equation (5)). The accuracy with which equa-

tion (12) predicts the experimental data for yt from 0 to 26
obviates the necessity of assuming the exlistence of a separate

layer near the wall that is purely laminar, but does not eliminate
the possibility of its existence, as has usually been done in pre-
vious investigations. A single equation has therefore been obtained
that, for adlabatic incompressible flow, adegquately represents the
two regions, which are commonly called the laminar layer and the
buffer laysr. The buffer layer has previously been represented only
by empirical sesquations,

The agresment of equation (12) with the dats for values of
y+ from 0 to 26 does not eliminate the possibility of the exist~
ence of a very thin layer that is purely laminar, for example, for
the region 0 < y¥ < 3. It is possible that a finite layer exists
in which adjacency of the wall completely damps out turbulence.
The thickness of the layer then corresponds to some critical wall
Reynolds number pugYe/m where ug 1is the velocity at the edge
of the layer and y, 1s the thickness of the layer., Velocity
distributions for 0 < y* < 3 given by equation (12) are prac-
tically laminar, however, so that it makes llttle difference, for
calculating velocity distributions, whether the layer is taken
into consideration. The only case in which presence of the layer
may become important is that of heat transfer in fluids having
high Prandtl number, where the turbulence predicted by equation (5),
though it may be slight, is important because of the small amount
of heat transferred by conduction.

The agreement of equation (12) with the data, together with
the discussion preceding the derivation of the equation, indicate
that in the region close to the wall the mechanism of turbulent
tranafer of momentum can be consldered affected mainly by quanti-
ties that are determined relative to the wall; that 1is, by the
distance of the point from the wall and by the veloclity at the
point relative to the wall., As was shown in the discussion pre-
ceding the derivation of equetion (12), the veloclity distribution
ebout the point is known to a first approximation when the two
quantities u and Yy are known at the point.

The general form of the equation that is usually employed to
represent the turbulent regime was obtainsd by von Kérmén and is,
as shown in the analysis section,

+ 1

u loge yt + C (15)

5|
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The values of the constants C and K, obtained from
Nikuradse's data (reference 1), are 5.5 and 0.40, respectively.
Corresponiing valuss that represent the present data somewhat
better are C = 3.8 and K = 0.36. The curve representing
equation (15) using these values is plotted in figure 4, in.which
good agreement with the experimental data is indicated for gyt =0
to yt = 26. The curves corresponiing to the equations for flow
near the wall (equation (12)) anmd flow at a distance from the wall
(equation (15)) cross at y+ = 28,

The agreement of equation (15) with the data, together with
the discussion preceding the derivation of the equation, indicate
that for a reglon distant from the wall the mechanism of turbulent
transfer of momentum can be considered dependent mainly on the flow
conditions in the vicinity of the point considered; that 1s, on the
velocities in the vicinity of the point relative to the velocity at
the point and not on the position of the point in the tube (the
.distance from the wall) or on the velocity relative to the wall.

The curves representing equations (12) and (15) have slopes
that are not quite equal at their intersectlion at y = 263 this
disparity would, however, be expected because the two equations
were derived with the assumption that the turbulence mechanism in
the two regions 1s dominated by different factors; hence an abrupt
change in turbulence mechanism at the intersection is implied in
the equations. Actually, there is probably a gradual change that
could not be investigated by the simplified methods used herein.
Inasmuch as the actual error in the vicinity of the Iintersection
is insignificant, the present treatment is consldered adeguate for
adlabatic flow,.

The value for K (in squation (1S)), which 1s known as the
Kérman constant, was checked by calculating friction factors and
Reynolds numbers and plotting 1/44f against ReNIf as shown
in figure S. The line drawn through the data corresponis to the
Kérmin relation between friction factor and Reynolds mumber, which
is

L -c,+ 55%3 log (Re A4F)

N&E

This egquation is.derived in reference 2 directly from the
equation for velocity distribution. The valus of K was 0.38
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as before, and Cp 1s fourd from the data to be - 1.84. Both

velocity-distribution and friction-factor data therefore indicate
that a value for K of 0.36 is reasonabls, at least for the
present tube,

The variation of the ratio of velocity at the center of the tube
to bulk velocity with Reynolds number, as indicated in figures 3(a)
and (b), can be explained by the plots of the equations in fig-
ure 4(a$ As y' 1increases the curve becomes flatter. Increasing
values of Reynolds number correspond to ilncreassing values of y*
in the central portion of the tube, so that for high values of
Reynolds number the velocity profile in the central portion of the
tube becomes flato thus the ratio of velocity at the center of the
tube to bulk veloclty becomes less than for low Reynolds numbers,

Effect of variable shear stress. - Neither ut nor y* are
Punctlions of the tube radius. Neglecting the radius In the correla-
tion 18 equivalent to assuming uniform shear stress across the tube,
(Ses equations (15) and (20) in the section "Analysis.") The
results can be correlated by assuming uniform shear stress across
the tube because the greatest rate of wvelocity change with dils-
tance from the wall occurs near the wall where the change in shear
stress is very small. A comparison between equation (20), which
takes into account the variation in shear stress across the tubs,
and equation (15), which assumes uniform shear stress, is shown in
figure 6, ‘The constant C 18 so determined for each valus of
rot that u* =13 when y* = 26. These values were melected
in order to make the mean deviation of equation (20) from equa-
tion (15) a minimum, The maximum difference between the values-
of ut determined by the two equations is about 2% percent, which

1s the same as the scatter of the experimentsl data points. ZEgua-
tion (15) therefore gives an accuracy comparable to that obtained
in most flow measurements so that conslderation of the variation
in shear stress across the tube does not seem necessary,

Equations for compressible flow. - The equations for com-
pressible flow are presented in figure 7, For graphing equation (29),
the value of the Integral was found by plotting the integrand agailnst
ut and planimetering the area under the curve. The constant n
was agaln set equal to 0.109 amd d for alr was found from vis-
coslty data to have an average value of 0,684 for temperatures
between 0° and 2000° F. For plotting equation (33), C, was deter-
mined for each value of o from the value of ut at y+ = 26
found from equation (29). Fram the definitions of M, T, u*,

J PSRRI S S M S -—
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and «, 1t can be shown that the relation between u*, M, 7,
and o 18

e - 1
. 2
of =—2— 4+ 1
(M2(7-1) )

For M=1, 7 =1.4, amd a = 0.00025, u' is found to be 25.8,.
This point is marked on the curve.

As o Increases, u* decreases for constant values of yt
(fig. 7). For local Mach numbers up to 1, however, the deviation
is slight and, in general, is not more than > percent from the

value of ut given by the incompressible-flow equation. A single
line is used to represent equation (29) because the compressibility
effect is so smell that it cannot be seen when the equation is
plotted to the scale used in this figure. .

It therefore appears that with respect to campressibility
effects and tube radius or shear-stress varlation, the simplified
incompressible-flow equations (12) and (15) give an accuracy com-

parable to that of flow measurements, The fluid properties used-
in ut and y* are evaluated at the wall or total temperature.

"Flow Rates

-

The flow rates corresponiing to various pressure gradlents
along the tube can be cbtained from the veloclity-distribution
equations by a graphical integration. For this integration,
(p/p ) ut was+Blotted against (ry* - y+)2, where
1o/pO 1/(1-au*®). It can easily be shown that the area under
this curve 18 w OVTB?pO po)/xgpoz. If this dimensionless

group 1s divided by ro+ and multiplied by =x in order to

eliminate T,, there results w/(gporo). This parameter is
plotted against ryt for various values of o in figure 8.
Figure 8 gives the flow rate to be expected for a given shear
stress or frictlon-pressure gradient. The data of figure 8 also
provide a means for obtaining the velocity distribution in a
particular fube from the generalized velocity distributions in
Pigures 4 and 7 when the flow rate and the fluld properties are
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known, Measured flow rates for conditions where compressibility
offects are small are also plotted in figure 8 and agree closely
with the curve for a=0. The curves Indicate that at a Mach number
of 1, compressibllity effects Increase the flow-rate parameter
w/(gporo) by about 12 percent., Several data points corresponding

- to higher values of a are also plotted in the figure and the trends

corresponding to increasing values of o appear to be similar to
the predicted trends, although no definite conclusion can be drawn
from the limited range of values of ao shown. Datas corresponding
to higher values of o are not plotted because relisble measure-
ments of the severe pressure gradlents involved could not be
obtained.

CONCLUDING REMARKS

The results obtained in this investigation should be applicable
to any gas to which the perfect gas law applles and for which the
Prapdtl number 1s close to 1. The value of the exponent & for
viscoslty variation with temperature was obtained specifically for
air, but it occurs only in the equation for compressible flow close
to the wall where compressibility effects are negligible, The.
equations and the curves for incompressible flow should, of course,
also be applicable to liguids, inasmuch as the fluid properties
that determine the flow phenomena are common to liquids and gases,

et

SUMMARY OF RESULTS

The following results were obtained from the analytical and
experimental investligation of the adlabatic flow of air through a
smooth tube having an ingide diameter of 0.87 inch and a length of
87 inches:

1. The length of tube required for obtaining fully developed
flow was greater with a rounded entrance than with a right-angle-
edge entrance., With a rounded entrance, the flow at the axis of
the tube was still developing slightly at 100 diameters frcm the
entrance., For both entrances, however, the flow close to the wall
developed in a much shorter distance than did the flow in the center-
of the tube, The flow close to the wall determines the shear stress
or pressure gradient along the tube, so that the effect of entrance
on these factors is slight except for very short tubes.

e e e e e e e e e A Cim et S - e < e e e T e = m
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2. A good correlation of velocity-distribution data for fully
developed flow was obtalned by using the well-known dimensionless
veloclty and distance parameters, The date agreed closely with
those of Nikuradse and other investigators.

3, The equation derived for adiabatic incompressible flow close’

to a wall represented well the relatlon between the velocity and
distance parameters found experimentally for the two regions
that have generally been called the laminar layer and the buffer

layer.

4, The analysis and experimental investigations indicated that
the effect of variable shear stress on veloclty distributions 1is
8light; the maximm varistion the veloclty paramster ceused by
this effect was approximately percent,

L 5. The compresslble-flow squations showed that the effects
of compressibility on velocity distributions are small for Mach
numbers up to 1l; the maximum variation in the‘velocit{ parameter
caused by compressibillty effects was approximately ZE percent.

6. The gimplified incompressible-flow equations derived on
the assumption of uniformity of shear stress across the tube pre-
dicted velccity distributions in smooth tubes for Mach numbers up
to 1 with an acouracy comparable to that of flow and pressure
messurements,

7. Graphical integration of the velocity-distribution equa-
tions gave flow rates that agreed closely with flow rates from
ocrifice measwrements,

Lewls Flight Propulsion. Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, January 9, 1950.
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APPENDIX - SYMBOLS

The following symbols are used 1n the report:

A

C,Cy,C;

Cp
D

internal oross-sectional area of tube, sq ft

constants of integration

specific heat of fluid at constant pressure, Btu/(1b)(°F)
inside diameter of tube, ft

exponent that describes varlation of viscogsity of fluid
with temperature

acceleration due to gravity, 32.2 f£t/sec?
chhanical equivalent of heat, 778 £t-1b/Btu
constant

total pressure, 1lb/eq Tt absolute

static pressure, 1b/sq ft absolute
perfect gas constant, £t-1b/(1b)(°R)
radius, distance from tube center, £t
inside tube redius, £t

total temperature, °R

absolute wall total temperature, °R
absolute static temperature, °R

bulk or average static temperature of fluid at cross
section of tube, R

velocity parsllel to axis of tube, ft/sec
bulk or average veloclity at cross section of tube, ft/sec

velccity at center of tube, ft/sec
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fluid-flow rate, 1b/sec
axial distance from tube entrance, £t
distance from tube wall, ft

ratio of specific heat at constant pressure to specific
heat at.constant volume

coefficient of eddy diffusivity, sq ft/sec

Rérmdn constant

absolute viscosity of fluld, lb-sec/sq £t
absolute viscosity of fluld at wall, lb-sec/sq ft
mass density, 1b-secZ/ftt

bulk or average density at cross sectlon of tube,
1b-sec? /Pt ) :

mass density of fluid at wall, lb-sec?/ft*
shear stress in f£luid, 1b/sq £t
shear stress produced by turbulence, 1b/sg ft

shear stress produced by viscosity, 1b/sq £t

shear stress in fluid at wall, 1b/sg ft

Subscripts:

fr

mom

on friction pressure gradient

on momentum pressure gradlent

Dimensionless paramsters:

To

compressibility parameter, ————
. ZchpTopo
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Re

1. Rouse, Hunter:

D

31

friction factor, - ———==

Mach number, —2

A7eRt

Reynolds number,
Ho

pbup D

(&),
2o

tube-radiug parameter, EJ_W.’/DDO r,
0 -

velocity parameter,

u

=

‘wall-distance parameter, 7_
Ho/Po

Po

0
OY

Nrof
P
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